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A NEAR-FIELD APPROACH TO THE SONIC BOOM PROBLEM 

By F. A .  Woodward 
The Boeing Company 

SUMMARY 

Results are presented of an investigation of the feasibility of extending an 

existing supersonic wing-body analysis and design method (reference 1) to the 

problem of calculating the pressure signature and associated shock wave 

pattern in the field surrounding arbitrary airplane configurations at supersonic 

speed. 

available to make this extension possible; the steps involved are outlined in 

some detail. 

The conclusion reached is that theoretical methods are presently 

The principal difference between the above method and the currently 

accepted theory of Whitham (reference 2) is shown to be in the singularity 

representations used. The wing-body method represents the  configuration by 

a spatial distribution of singularities over the entire wing and body surfaces, 

while Whitham's method uses an equivalent linear distribution of singularities 

along the body axis. In the far field, both methods give the same results, but 

in the near  field, the spatial singularity representation is expected to  be 
superior. An improved understanding of the wave pattern in the near field 

could lead to  new techniques for  modifying o r  reducing the pressure signature 
in the far field. 
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INTRODUCTION 

Calculations of the pressure  signature and shock wave pattern in the field 

surrounding arbi t rary airplane configurations at supersonic speed have been 

based almost exclusively on a theory presented by G. B. Whitham (reference 2). 

The predictions of this theory have been verified by extensive wind tunnel and 

flight test measurements and are generally accepted as a basis for the 
estimation of sonic boom overpressures. 

The present study was undertaken to investigate the feasibility of applying 

a recently developed wing-body analysis method (reference 1) t o  the problem of 

calculating the pressure signature in the near  field? In this method, the con- 

figuration is represented by a spatial distribution of singularities located in the 

plane of the wing and along the body axis. Whitham’s theory, on the other hand, 

is based on the slender-body, slender-wing assumption, in which the airplane 

volume and lift distributions a r e  represented by equivalent line-source distribu- 

tions located along the body axis only. In the far field, these two distributions 

of singularities produce flow patterns that become identical asymptotically, but 

in the near  field the spatial distribution of singularities should give superior 

results. 

boom theory, since it is in this region that the  interaction of the waves from 

the various airplane components occurs. The resulting reinforcement o r  
cancellation of the waves in the near field ultimately determines the level of 

the far-field pressure signature. Thus, an improved theory in the near field 

may give additional understanding of the wave interaction problem, which in 

turn  could lead to  new techniques for modifying o r  reducing the pressure 
signatures in the far field. 

The wave pattern in the near field is of particular importance in sonic 

The extension of the present wing-body analysis method to calculate the 

magnitude of the pressures  and velocities in the field has already been accom- 

plished. The only additional steps required a r e  to  determine the location of the 

Mach waves in the field to  first order,  and t o  inser t  the shock waves. 

techniques involved in accomplishing these s teps  a r e  outlined in the following 

The 

* In sonic boom theory, the near field i s  defined as the region between the body 
and the radial  distance at which all the waves generated by the body have 
coalesced into two distinct shock waves o r  an  N wave pattern. The far field 
includes all space beyond this radial  distance. 
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paragraphs. 
closely, and in fact, i s  shown to give exactly the same asymptotic result in the 

far field. 

The general approach follows that proposed by \\'hitham very 

Valuable assistance in the evaluation of some of the integrals tabulated in 

appendix I1 was provided by Dr. Tse  Sun Chow, a mathematics research 

specialist at Boeing. 
This study was undertaken by the Aerodynamics Research Unit of The 

Boeing Company, Commercial Airplane Division, as part of NASA contract 

NAS 2-3719 for the Ames Research Center. 
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SYMBOLS 

pressure  coefficient 

f irst-order correction function 

source strength 

Constant 

panel leading-edge slope 

Mach number 

number of singularities 

radial  coordinate 

body radius 

singularity strength 

nondimensional variable x/p, r 
integral function 

nondimensional perturbation velocity in x direction 

freestream velocity 
nondimensional perturbation velocity in y direction 

nondimensional perturbation velocity in z direction 

Cartesian coordinates 

origin of first-order singularity (Whitham's notation) 

flow inclination angle 

d S 7  
ratio of specific heats for air 
cone half angle 

panel leading-edge sweepback 

Mach angle 
cylindrical coordinate 

Subscripts : 

W f rees t ream condition 

j singularity number 

r radial  direction 

S source,  shock wave 

V vortex 
8 theta direction 

5 
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AERODYNAMIC THEORY 
Perturbation velocity components u ,  v ,  and w at any point P (x, y, z) in 

the field surrounding an arbi t rary wing-body combination in supersonic flow may 

be calculated to first order  by the method of singularities (reference 1). At the 

present stage of development, the singularities are located along the body axis 
and on panels distributed over the wing and body surfaces. Singularity strengths 

are determined by boundary conditions specified at control points on the surface 

and govern the magnitude of velocity components in the field. 

In the following discussion, the contribution of an  individual singularity is 

considered. The flow-field disturbance created by an individual singularity is 

conical and bounded by a Mach cone having its apex at the origin of the singu- 

larity, However, it should be emphasized that the net disturbance in the flow- 
field surrounding this singularity is that due to  the sum of the contributions of 

all the singularities used to  represent the configuration. Therefore, the dis- 

turbance field created by the wing-body combination is bounded by an envelope 
of the Mach cones originating from each of the singularities used in the repre-  
sentation, which may not be conical. In linearized theory, the flow field within 

this envelope of Mach cones is referred to  as a zero-order flow field since the 

disturbances are assumed to  propagate into the field at the speed of sound of the 

fluid at rest. 
is given by 

The slope at an outgoing Mach wave of the zero-order flow field 

(1) 
2 - _  dx - cot pm= dMm - 1 = pm 

d r  

where pm is the Mach angle of the undisturbed flow. 

Whitham's theory fo r  determining the flow pattern assumes that the 

linearized theory of supersonic flow gives a valid first approximation to the  

magnitude of the velocity components everywhere in the field, provided that the 

approximate characterist ics of the Mach cone envelope a r e  replaced by 
a sufficiently good approximation to  the exact characteristics. The 

slope of the exact characterist ic of an outgoing wave is given by 

rlV C n t  p - tall n, 
1 + cot p tan a! == cot ( p + ( Y )  = d r  
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where p is the local Mach angle based on the local Mach number M, and Q! is 

the local inclination of the s t ream measured from the freestream direction. 

Place 
cot p = = J M T  

r tan a = v 

where vr is the ratio of the velocity in the radial direction to the freestream 

velocity U,. Then for  small values of pvr, equation (2) may be written 

approximately 

F o r  large values of pvr, equation (3) cannot be expanded in this manner to 

obtain an approximation to the slope of the characteristic. In this case, for  

~ 

small  v_, equation (2) may be inverted and expanded as follows: 

(3) 

Equation (4) gives a more accurate estimate of the slope of the characteristic 

for  high Mach numbers. 

by introducing a linear relationship between the local Mach number and pressure 

coefficient. The relationship used is compared with the exact isentropic 
relationship in figure 1. If, in addition, the linear theory pressure coefficient 

relationship C 

Equations (3) and (4) may be put into their final forms 

= -2u is assumed, then P 

M y  M w [ l  + ( 1  + 'M:)u] 

2 
MW 

p ,  
P = M  p ,  + -(1 ++M:)u 

giving 

4 

5 pm+-- + u - M, (vr + p,u) Moo 2 dx - 
d r  Po0 

fo r  low Mach numbers and 
4 2 

M W  Moo 

PO3 p ,  
~- 2 (Vr + P,U) * &=E- l y + l  2 3 u + -  

for  high Mach numbers. 
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The range of validity for  each of these approximate formulas is illustrated 

on figure 2, which shows the wave pattern in the flow around an unswept plate at 
10 degrees incidence. In the figure, the wave angle p + ameasured  from the 

freestream direction is plotted as a function of Mach number for both the 

compression and expansion sides of the plate. The Mach wave angle poo of the 

undisturbed flow is shown on both sides fo r  reference. In addition, the angle of 

the limiting isentropic expansion wave of a Prandtl-Meyer fan is shown for the 

expansion side, and the shock wave and limiting isentropic compression wave 

angles are shown for the compression side. The range of validity of equation (6) 

is seen to be quite small  in this example, while equation (7) gives a good approxi- 

mation for all Mach numbers greater than 2. It should be noted that Whitham's 
theory uses  equation (6) to approximate the characteristic direction of the out- 

going waves and, as a result, may introduce significant e r r o r s  if the theory 

is applied at high Mach numbers. In this study, both equations (6) and (7) have 

been used to approximate the slope of the outgoing Mach waves and the results 
of each calculation compared . 

Equations of First-Order Mach Waves 

Equations (6 )  and (7) give alternate expressions for the slope of an outgoing 
Mach wave in te rms  of the velocity components along it. The equation of the 

trace of the wave in a plane 8 = constant may be obtained by substituting the 

appropriate expressions for  u and vr into these equations and integrating. 

For low Mach numbers, the velocity components at a point P (x, r, e) lying 
on the first-order Mach wave from a point Q (xo + p,R9 R ,  0) on the bbdy sur- 
face a r e  assumed to be equal to those evaluated by linearized theory at  a point 

P' (x + Ax, r, e) lying on the zero-order Mach wave passing through Q. The 
zero-order Mach wave intercepts the body axis at x = xo. This is equivalent 

to assuming that the first-order Mach forecone from P intercepts the same 

number of singularities on the body axis a s  the zero-order Mach forecone 

from P'. The geometry is illustrated at the top of the next page. 

Since 
-f- A x  7 Xo + 'RJ 

then 
u(x, r, 6 ) = u(xo + PJ,  r, 6 )  

11 
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Substituting these expressions into equation (6) and integrating with respect 

to r, a n  equation for  the first-order Mach line in the plane 8 = constant is 
obtained. 

where xo is the value of x fo r  r = 0, and R is the value of r where the Mach 

line emerges f rom the surface of the body. It should be noted that the wave 

distortion Ax is given by the sum of the two integrals in equation (9). The 
evaluation of these integrals will be discussed in  the next section. 

F o r  high Mach numbers, a slightly different assumption must be made f o r  
the values of the velocity components at P. In this case, the Mach waves lie 

much closer to the body surface, so it is assumed that the velocity components 

there a re  equal to those evaluated by linearized theory at a point PIr (x, r + 

Ar, e). Prr lies on the zero-order Mach cone that passes  through Q and 

intercepts the body axis at xo. The geometry of this case is illustrated at 
the top of the next page. 
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Now 
x - xo 

Pm 
r + A r =  

so 

u(x, r, e )  = u ( X, - x ~ ,  e) 

vr (x, r ,  e) = vr ( X ,  - x;-xo, 0) 

Pm 

REAR VIEW Y 

Substituting these expressions into equation (7) and integrating with respect 
to x, a n  alternate equation for the first-order Mach line in the plane 8 = constant 

is obtained. 

( - x o ,  0 )  dx 
x -  x O -  - y ; l M m i  f" r =  u x, xo + PJ Pa Pm Pm 

Again, the wave distortion A r  is given by the sum of the two integrals in 

equation (11). In equations (9) and (ll), 

v = v cos 8 + w sin 8 r 

when v and w are given in Cartesian coordinates. 
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Classification of Velocity Components 

The wing-body combination may be represented bp as many as seven 

different types of singularities, as indicated on figure 3 .  

sented by  a combination of line sources and doulilets, the wing thickness 1)y 

planar source distributions, and the wing lift and interference effects by planar 

vortex distriliutions. 

sentation are listed below: 

1. Linear source 

2 .  Quadratic source 

3 .  Linear doulilet 

4. Quadratic doublet 

5. Constant source sheet 

6. Linear source sheet 

7. Constant vortex sheet 

The body is repre- 

The seven elementary singularities used in the repre- 

Line singularities 

Planar singularities 

i 
I 

Formulas for the velocity components corresponding to  these seven 

elementary singularity distributions are listed in appendix I. 

coordinates are referred to the origin of the singularity. 

In this l ist ,  all 

The resultant velocity a t  any point in the disturbance field from a wing-body 

combination is obtained by suniiiiing the products of the elementary velocity 

conipoiieiits and their respective singularity strengths, for  each singularity 

used in  the representation. For  example, fo r  a configuration consisting of N 1  

sources and N 2  vortex singularities, 

N 1  N 2  

S .  v.  v .  
j = 1  j J j = l  J J 

u = c u s s  + X u  s 

N 1  N 2  

j = l  J j j = 1  J j 
v = c v s . s s  + c v v . s v  

N 1  N 2  
\v = c w s , s s  -1 E\. v. s v 

j = l  J j j = 1  J j 

where 
S is t h e  strength of the jth source 

S is the strength of the j vortex 

S .  
.I 

th 
V .  

I 
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BODY THICKNESS 

1. LINEAR SOURCE 
2. QUADRATIC SOURCE 

BODY CAMBER AND INCIDENCE 

3. LINEAR DOUBLET 
4. QUADRATIC DOUBLET 

WING THICKNESS 

5. CONSTANT SOURCE SHEET 
6. LINEAR SOURCE SHEET 

WING CAMBER, INCIDENCE, AND WING-BODY INTERFERENCE 

7. CONSTANT VORTEX SHEET 

Figure 3. Basic Singularit ies 
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Integration of Velocity Components 

The integrals appearing in equations (9) and (11) a r e  made up of sums of 
elementary velocity component expressions of the types listed in appendix I. 
An examination of this list shows that these expressions are composed of 

combinations of the nine functions listed below. 

T1 = cosh" t 

T 2  = J t c  

-1 T = cosh 
t - Bmm cos 8 

2 2 dpmrnt - cos t) + (1 - P," m2) sin e 3 

I C )  

-1 pDom sin 8Jt" - 1 
T .  = tan 

1 - p,mt cos 8 4 

T5 = r T 1  

T = r T 2  6 
T2 

7 r  
T = -  

T =rT3 

T g  = rT4 
8 

where 
X t =- m = cot A 

P, I? ' 
For use in equation (9), these functions must be  integrated with respect to  r, 

with x = xo + p, r. 
respect to x, with r = (x - xo)/P,. In fact, only one integration need be 

performed in either case,  as the variables can be interchanged without changing 
the form of the functions. These integrals have all  been evaluated as part  of this 

study and a r e  listed in appendix 11. 

the x coordinate of the first-order Mach wave f rom xo in t e rms  of the radius 

r. 

For use in equation (ll), they must be integrated with 

For low Mach numbers, equation (9) now gives an explicit expression fo r  

16 
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I where 

For high Mach numbers, equation (11) similarly gives an explicit expression 

for r as a function of x for given x In nondimensional form, 0' 

where 

(15) 

Depending on the Mach number, either equation (14) or  (15) may be used to 

define the first-order Mach waves. 

Relationship to Whitham's Theory 

The function Fl(t), where t = PO6r/x in equation (14), or t = x/xo in 
0 

equation (15), is related to Whitham's function F(y) where y E xo in the 

present notation. 

a simple cone of half angle 6. For this example, linearized theory gives 

This can be demonstrated by considering the flow field about 

where 
2 tan 6 

2 2  2 1 k =  
- P, tan 6 + tan 6 cosh-' 

P, tan 6 

17 



Therefore, v - 
Fl(t) = k 4L-Z + t cosh-' (1 + +)J I 
F2(t) = k 4 G . -  (1 + t) cosh-' (1 + I 

(17) 
K =- - cosh-l 1 ] 

2 $tan 6 
r 1 

In the far field, t - m .  

It is shown i n  Reference 3 that 
lim cosh-' 1 X = J2(1-x) 
x-1 

lim t cosh-' (1 + +) = fi 
t + m  

Similarly, 

and 

Fl(t) * 2 

F2(t) - 0 

s o  that the asymptotic form of equations (14) or  (15) is 

which is exactly equivalent to Whitham's formula for a cone 

where 

F(y) = 2a2fi= 2a2& 

2 provided the cone is  sufficiently slender so that k = 6 . 
equations (14) o r  (15) give expressions for the Mach line xo = constant in the 

entire flow field. An example showing the curvature  of the Mach line near  a 
15-degree cone at Mm = 3 . 0  is presented in figure 4. 

Therefore,  

18 
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Theoretical Comparisons for Cones 

The first-order flow field theory is easily illustrated by calculating the 
Only one singularity is required in this example, flow about a simple cone. 

but this is sufficient t o  demonstrate the effect of the high and low Mach number 

approximations on the shape of the Mach waves, the development of a limit cone, 

and the resultant distortion of the pressure signature in the field. In addition, 

the location of the front shock wave can be estimated and compared to that 

given by the cone tables and that predicted by Whitham's theory. 

The first-order Mach waves have been calculated using equations (14) and 

(15) for a 15-degree cone at M,= 3.0 .  

are shown in figure 4. 
two calculations, with the high Mach number solution of equation (15) appearing 

to give the most realist ic approximation to the first-order Mach lines. 

The shape of the resulting Mach lines 

A considerable difference i s  observed between these 

Both solutions show the development of a limit cone, which in this case is 

The limit cone indicates the most forward extent of the 

an exact cone from the origin just tangent to  the envelope of the first-order 

Mach waves. 

disturbance. 

The pressure signature corresponding t o  each solution is also indicated on 

the figure, for  r = l/P, = 0.354. 

pressure rise from zero at the undisturbed Mach cone at x = 1.0 to  a value of 

C = 0. 16 on the surface. The low Mach number approximation predicts a 

considerable distortion of this pressure signature, which extends forward t o  

The zero-order solution shows a gradual 

P 

just touch the limit cone. 

moderate distortion. Kach signature returns to  the same value on the cone 

surface. 

The high Mach number approximation gives a more  

The  forward curvature of the pressure signature between the Mach cone 
and the limit cone represents a physically unrealistic solution. It is generally 

assumed that a shock wave will develop in this region, which will introduce a 
discontinuous pressure rise from zero to some value on the upper limb of the 

pressure  curve. 

principal that t he  slope (dx/dr), of the shock wave lies halfway between the 
slope of tne undisturbed Mach wave 8, aiid the fii-st-oi-der M Z X ~  wave dire~t:jr  

behind it. 

The shock wave location is determined by applying the 

For a cone, the slope at the shock wave is given by 

19 
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but the slope of the shock wave is  also given by 

These two equations may be solved graphically t o  determine ts and xs 
directly. It is of interest  to note that t h e  application of this method to the 

Whitham theory fo r  cones gives 

This i s  identical t o  the equation obtained by Whitham by another method. 

The position of the shock waves corresponding t o  both the low Mach number 

and high Mach number approximations a re  indicated on the figure and compared 
with the exact shock wave position obtained from the cone tables. The high Mach 

number solution gives an accurate estimate of the shock wave location in this 

example. 

completely unrealistic negative result. 

On the other hand, Whitham's formula, equation (22), gives a 

A comparison of the first-order limit cone and pressure  signature 

determined from equation (14) with that given by Whitham is presented in 

figure 5 fo r  a 10-degree cone at M,= 3.0. In this example, Whitham's shock 

wave formula gives a more  realistic result but still shows considerable e r r o r  
when compared with the exact result  from the  cone tables. The present first- 

order  theory gave very close agreement with the  exact result  in this example, 
however. 

The shock wave locations for both 10- and 15-degree cones have been 
calculated for  three different Mach numbers using equations (20) and (21) and 

presented in  figure 6. Also, shown on the figure are the exact results given by 

the cone tables,  and Whitham's approximation, equation (22). In this calculation, 

the effect of using the high and low Mach number approximations to the first- 

order  theory (equations (15) and (14), respectively) is also shown. Based on the 

relatively few calculations done during this study, the low Mach number 

approximation seems  t u  b e  adequate for predicting ihe shuck wave iocatiorl 011 

cones provided the freestream Mach cone is relatively far from the cone surface. 

For  high Mach numbers, the high Mach number approximation is superior for the  

blunter cones. Whitham's approximate formula is definitely inferior for  

15-degree cones at all Mach numbers, and f o r  10-degree cones above M,= 2.0. 

21 



The differences between the present first-order theory and Whitham's 

theory diminish with distance from the body, and the two theories become 
identical at an infinite distance from the source. However, the relative position 

of the shock wave f rom the nose depends on the accuracy to  which the flow field 
is predicted in both the near and far fields. 

It is clear  that the present method can be expected to  give improved 

pressure signatures in the near field, particularly f o r  bodies having fairly blunt 

noses at higher Mach numbers. It is also probable that the method will give 

improved estimates for  the location of shock wave coalescence for  any 

configuration and Mach number. 
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DEVELOPMENT PROCEDURE 

The development of this method to calculate the pressure  signatures , 
including shock waves, for arbi t rary airplane configurations in both near and 

far fields appears to be possible at this time. The development would logically 

proceed along two lines: one would be to extend the existing supersonic wing-body 

analysis program to include horizontal and vertical  ta i ls ,  canards,  and 

nacelles; the other would be  to  study the contribution of each of these components 

to  the pressure  signature in the field. 

the shock wave locations in the field would be  required. 

these problems will be discussed in more detail below. 

In addition, a procedure for estimating 

The various aspects of 

Extension of Wing-Body Program 

The extension of the existing wing-body program (reference 1) to include 

the effects of horizontal and vertical tails, canards,  and nacelles would not be 

a major undertaking, No new types of singularities are required for  this 

extension of the program, only a redistribution of existing types. 

If an increase in the total number of singularities is required to  give an 

adequate representation of an arbi t rary airplane configuration, the program 

changes may be more difficult. The present limits of 100 wing panels, 100 body 

panels, and 50 line sources and doublets have been set  t o  allow matrix inversion 

without partition within the core  of the IBM 7094 computer. An increase in 

these l imits would require fairly extensive reprogramming. 

Development of Flow-Field Program 

The wing-body program has been extended to calculate the first-order 

velocities and pressures  in the  surrounding zero-order flow field under the 

present  contract (NAS 2-3719). Development of this program to calculate the 

p re s su re  signatures of an arbi t rary airplane configuration uniformly to first 
order  would follow the theoretical method outlined in the previous section. The 

s teps  necessary to develop this program are given below. 

1. The functions Fl(t) and F (t) for  each of the seven elementary singular- 

ities wouid be forrnuiated in iei-iiis of the iiitegrak a!rcady ev~!~&ttlpc! ax! 
l isted in appendix 11. 

The flow field surrounding an  isolated body of revolution would be calculated 

using the four line singularities. 

2 

2. 

Then the effect of body thickness 
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3. 

4. 

5. 

distribution,incidence, and camber could be investigated in  both the near 
and far fields, and the far-field result  could be compared to Whitham's 

theory. 
The flow field surrounding an isolated wing at zero lift would be calculated 

next using the two planar source singularities. The effect of wing thickness 
distribution, planform, and subsonic and supersonic edges could be 

investigated in both the near and far fields. Again, the far-field result  
should be compared to Whitham's theory. 

The flow field surrounding an isolated lifting wing would be calculated, with 

lift effects being represented by the planar vortex singularity. This would 
perinit investigation of planform, subsonic and supersonic edges , camber,  

and incidence effects for wings with and without thickness in  both the near  

and far fields. A s  before, the far-field result  would be compared to 

Whitham's theory, while the near-field result  could be compared with 

Lighthill's first-order theory for the field surrounding subsonic leading 

edge delta wings and rectangular wing t ips (reference 3 ) .  

The flow field surrounding arbi t rary wing-body and airplane configurations 

would be calculated. The effects of wing height on the fuselage, wing thicli- 

ness  and camber,  shielded bodies, nacelles, and tails, could be investigated. 

Developnient of the configuration pressure  signature and coalescence of the 

shock waves from the wing and body could be studied in detail within the 

near field and beyond. The far-field result  should be compared with 
Whitham's theory. 

Shock Wave Location Method 

Concurrently with steps 2 through 5 above, a method would be developed to 

estimate the location of the shock waves in the field, based on the first-order 

velocity components and pressure  signature. The principle that the slope of 

the shock wave lies halfway between the slopes of the first-order Mach waves 

directly ahead and behind it would be applied to determine shock wave location. 

Much emphasis would be placed on the method developed by Whitham for  locating 

shock waves, and an attempt would be made to determine i f  the equal-area 
technique would still be applicable to this problem. In particular,  the problem 

of determining the distance from a body at which multiple shocks coalesce would 
be studied. 
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CONCLUSIONS 

The feasibility of extending the existing supersonic wing-body analysis 

program (reference 1) to  the calculation of the pressure  signature, including 

shock waves, of an arbi t rary wing-body or airplane configuration has been 

investigated, The conclusion reached is that theoretical methods are presently 

available to make this extension possible, and a program to  develop these 

methods in an  orderly fashion has been outlined in some detail. 

The method presented in this report  could serve  as a useful adjunct to 

Whitham's theory for calculating the pressure signatures and shock wave 

locations and strengths in both the near  and far fields surrounding arbi t rary 

airplane configurations. In particular, it has the advantage of allowing the 

calculation of the surface pressures ,  forces, and moments acting on the 

configuration while giving a uniformly valid first-order solution in the ent i re  

flow field, N o  slender-body and slender-wing theory assumptions a r e  required 

in the singularity representation, so that the effects of the  spatial distribution 

of the singularities is fully accounted for  at a l l  distances from the body. This 

feature of the new method could result  in improved estimates of shock wave 

coalesence in the near  field and corresponding improvements in the prediction 

of the location and magnitude of the intermediate shock jumps for pressure  signa- 

tu res  not fully developed into the asymptotic N wave form. 

The design implications of the method are important. Since the pressure  

signature is made up of summations of integrals of elementary velocity compon- 

ents and depends linearly on the strengths of the singularities used to  represent 

the configuration, a linear system of equations can be derived relating the 

pressure  signature properties to configuration geometry. It may then be  

possible to formulate several  interesting optimization problems relating the 

shape and intensity of the pressure  signature to  the airplane volume, lift, drag, 

and moment. 

All the theory presented in this study has been made assuming a uniform 

atmosphere. The effects of nonuniformity in the atmosphere would necessarily 

involve corrections of the type outlined in references 4 and 5. 

The Boeing Company 
Commercial  Airplane Division 

Renton, Washington 
August 15, 1967 
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APPENDIX I 

Tabulation of Velocity Components 
Line Singularities 
1. Linear Source 

u = - k l  cash -1 t 

v r = pkl , / t T  

v = o  e 
2. Quadratic Source 

u = - 2k2x(cosh-' t - -47 1 2  ) t 

v r = pk2x(Jt2 - 1 - cosh-l t ) 
ve = 0 

3. Linear Doublet 

u = pk cos BJt2 - 1 3 

pkg cos 8 
v r = -  2 (c0sh-l t + t J,"r;) 

2 v =  e 
4. Quadratic Doublet 

u = Pk4x cos 8 (JC - t cosh-I t )  

v r = -P2k4x cos 8 (cosh-l t + '(t 3 - $),/c ) 
-1 1 

3 
2 v = p k4xr sin 8 cosh t-- (t + i),/t2 - 1 ) e 

Planar S izu la r i t i e s  
1. Constant Source Sheet 

t - Bm cos 8 
2 u = -- cosh-l  

J(0mt - cos e) 

Jpmt - cos e12+(i-p 2 2  m )s in  2 e 

+ ( I  - p2m2) sin e 

- cosh-l t) 
t - Bm cos 8 

1 - p  m 
l o  w w = tan -1 m sin e&" - 1 

1 - pmt COS e 
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2. Linear Source Sheet 
- 
W 

X mt - COS e cosh-l t - Bm cos 8 u = -mr( 7r 77 1 p m  2 2  J(pmt - cos e I 2  + (1 - p2m2) sin 2 e 
I n  \ 

+ cos 

- 
wX v=.r 

-1 msineJt '  - 1 
1 - pm t cos 8 

0 cosh-' t - sin 8 tan 

(pmt - COS e )  - 

(cash" t - JT 1 cosh -1 t - Bm cos 8 

1 - p  m J(pmt - c o s e  I 2  + (1 - p2m2) sin 

- 

w = Lr 7r [sin e 

3. Constant Vortex Sheet 
r n  - u u = - t a n  -1 m s i n e J  t' - 1 

1 - pmt cos 8 7T 

t - Dm cos 8 
2 

J(pmt - cos e + (1 - p2m2) s in  e 
- cosh -1 t - m c o s O J G )  

where 

and 
m = cot A 

Note: P ' p ,  in this appendix. 



The above formulas are written for the subsonic leading edge case m < p. 
For the supersonic leading edge case,  replace the function 

t - Bm cos 8 
cosh-' 2 Jpmt - cos e )  + (1 - p2m2) sin e 

&mt - cos e l 2  + (1 - p2m2) s in  2 e 

I 
I 
1 
I 

by 
1 -1 - COS e 
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APPENDIX II 

Tabulation of Integrals 
-1 

(1+ to) dr  

-1 

1 + to - pm COS 8 
d r  I 3 =/cosh- '  J(pm(l+ to) - cos e)' t (1 - p2rn2j s i n 7  2 

1 + to - pm COS 8 

2 -  

+ 
1 - pm cos e 

pm cos e ,/- tan-i 
2 1 - pmcos e(1 + to) 

+ 
(1 - pm cos e )  

I 0 

pmt, sin e p+% 
1 - pm COS e (1 + to) 

P m p m  - cos e )  tan-l 
2 1 X 

(1 - pm cos e )  
m sin 8 + p  

1 - pm cos e 
1 + t - pm COS 8 

... 2 -2 2 2 
0 

2 2  
- p m  sin e J1-pm 3 cosh-' 

1 (1 - pm cos e)- JlVrn(i + toj - cos u j  + ii - p 111 j sin 6 
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-1 I5 = r cosh (1 +to) dr  J 
2 

= JL 2 [cosh-l (1 + to) + + (1 - to) J-)] 

I,=/.,/-) dr 

3/2 
2 

=- xO (1.;) 
3P2 

1 + to - pm cos 0 
dr  

8 P  ( p m ( l + t O ) - c o s e )  2 + ( 1 - p  2 2  m ) s i n  2 e 
I =2/.  cosh-' 

1 + t - pm cos 8 -1 
P 2  2 2 2  (pm(1+ to) - cos e) + (1 - p m 
-2 cosh 

sin28 -"(" J 

1 + t - pm cos e 
2 2 2  

cosh-' 
C B ~ U  +to) - cos e) + (1 - p m sin2 e 

pmt, s in  e J1+ $- ] 1 
+ sin 8 (pm - cos 0 )  1 - p m tan 7 -l1- pm cos e (1 + 
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1 9 =?Jtan-' l - p m c o s e ( l + t )  0 

I 0 .& pmtO s i n 8  1 +- 

1 - pm cos 8 (1 t t ) 0 

J to tan-' 

m2xO2 sin e 
+ 4(1 - pm COS e)/- [i (' + t) 

1 2 2  2 sin e ( i  - p m cos e - 4 p m ~ m  - cos e)) 
(1 - p m  cos 8) 

. prn3xO2 s in  e 
(1 - pm cos e) 

2 + 

8 (pm - cos 8) J-. 1 - p m 
4 + 

1 + t - pm cos 8 
I 

2 2 2  2 @m(l +to) - cos e) + (1 - P m ) sin 8 
cosh-' 

2 2  2 - (pm - cos e) - (1 - p m ) s in  8 tan-l 
pmtO sin e l 1  + 11 2 

(A9) 2 1 - pm COS 8 (1 + to) 

where 

0 X 

=pr 
and 

P = 8, 
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